Friday, June 13, 2014

Found! Hidden Ocean Locked Up Deep in Earth's Mantle

Found! Hidden Ocean Locked Up Deep in Earth's Mantle
Earth's surface oceans are quite apparent, even from satellite images

Deep within the Earth's rocky mantle lies oceans' worth of water locked up in a type of mineral called ringwoodite, new research shows.
The results of the study will help scientists understand Earth's water cycle, and how plate tectonics moves water between the surface of the planet and interior reservoirs, researchers say.
The Earth's mantle is the hot, rocky layer between the planet's core and crust. Scientists have long suspected that the mantle's so-called transition zone, which sits between the upper and lower mantle layers 255 to 410 miles (410 to 660 kilometers) below Earth's surface, could contain water trapped in rare minerals. However, direct evidence for this water has been lacking, until now. [See Images of Water-Rich Ringwoodite and Earth's Layers]
To see if the transition zone really is a deep reservoir for water, researchers conducted experiments on water-rich ringwoodite, analyzed seismic waves travelling through the mantle beneath the United States, and studied numerical models. They discovered that downward-flowing mantle material is melting as it crosses the boundary between the transition zone and the lower mantle layer.  
A water-rich mineral
Ringwoodite is a rare type of mineral that forms from olivine under very high pressures and temperatures, such as those present in the mantle's transition zone. Laboratory studies have shown that the mineral can contain water, which isn't present as liquid, ice or vapor; instead, it is trapped in the ringwoodite's molecular structure as hydroxide ions (bonded oxygen and hydrogen atoms).
In March, another research group discovered an unusual diamond from the mantle that encased hydrous ringwoodite. Though the find suggested the transition zone could contain a lot of water, it was the first and only ringwoodite specimen from the mantle scientists have ever analyzed (all other samples were produced in the lab or found in meteorites), and may not be representative of other mantle ringwoodite. [Shine On: Photos of Dazzling Mineral Specimens]
Found! Hidden Ocean Locked Up Deep in Earth's Mantle
Fragments of the blue-colored mineral ringwoodite
 synthesized in the laboratory.
The researchers knew the crystal structure of ringwoodite allows the transition zone to hold water, but that structure changes if the material moves across the boundary to the lower mantle (due to increasing pressures and temperatures). Because the structure of minerals in the lower mantle can't trap water the way ringwoodite can, Schmandt and Jacobsen reasoned the rocks would melt as they flowed from the transition zone to the lower mantle. "Melting is just a mechanism of getting rid of the water," Schmandt said.
To test this hypothesis, Jacobsen and his colleagues conducted lab experiments to simulate what would happen to transition zone ringwoodite as it travels deeper into the Earth. They synthesized hydrous ringwoodite and recreated the temperatures and pressures it would experience in the transition zone by heating it with lasers and compressing it between hard, anvil-like diamonds.
Using their setup, they then slowly increased the temperature and pressure to mimic the conditions in the lower mantle. The ringwoodite transformed into another mineral called silicate perovskite, and transmission electron microscopy showed that the mineral contained silicate melt around single crystals of perovskite.
article taken from Yahoo! (original link)



Copyright @ 2013 All About Space.

Designed by Templateiy & CollegeTalks